Hippocampal synaptic metaplasticity requires inhibitory autophosphorylation of Ca2+/calmodulin-dependent kinase II.

نویسندگان

  • Lian Zhang
  • Timo Kirschstein
  • Britta Sommersberg
  • Malte Merkens
  • Denise Manahan-Vaughan
  • Ype Elgersma
  • Heinz Beck
چکیده

Virtually all CNS synapses display the potential for activity-dependent long-term potentiation (LTP) and/or long-term depression (LTD). Intriguingly, the potential to exhibit LTP or LTD at many central synapses itself is powerfully modulated by previous synaptic activity. This higher-order form of plasticity has been termed metaplasticity. Here, we show that inhibitory autophosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII) is required for hippocampal metaplasticity at the lateral perforant path-dentate granule cell synapse. Brief 10 Hz priming, which does not affect basal synaptic transmission, caused a dramatic, pathway-specific and long-lasting (up to 18 h) reduction in subsequently evoked LTP at lateral perforant path synapses. In contrast, LTD was unaffected by priming. The induction of lateral perforant path metaplasticity required the activation of NMDA receptors during priming. In addition, metaplasticity was absent in knock-in mice expressing alphaCaMKII that cannot undergo inhibitory phosphorylation, indicating that inhibitory autophosphorylation of alphaCaMKII at threonines 305/306 is required for metaplasticity. Metaplasticity was not observed in the medial perforant pathway, consistent with the observation that CaMKII activity was not required for the induction of LTP at this synapse. Thus, modulation of alphaCaMKII activity via autophosphorylation at Thr305/Thr306 is a key mechanism for metaplasticity that may be of importance in the integration of temporally separated episodes of activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.

Accumulation of amyloid beta-peptides (Abeta) in the brain has been linked with memory loss in Alzheimer's disease and its animal models. However, the synaptic mechanism by which Abeta causes memory deficits remains unclear. We previously showed that acute application of Abeta inhibited long-term potentiation (LTP) in the hippocampal perforant path via activation of calcineurin, a Ca2+ -depende...

متن کامل

An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling.

The strength of hippocampal synapses can be persistently increased by signals that activate Ca2+/calmodulin-dependent protein kinase II (CaMKII). This CaMKII-dependent long-term potentiation is important for hippocampal learning and memory. In this work we show that CaMKII exhibits an intriguing switch-like activation that likely is important for changes in synaptic strength. We found that auto...

متن کامل

Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices.

Autophosphorylation of Thr286 on type II Ca2+/calmodulin-dependent protein kinase (CaM kinase) in vitro causes kinase activity to become partially independent of Ca2+. Here we report that Thr286 is the major CaM kinase autophosphorylation site occupied in situ in "organotypic" hippocampal cultures. Measurement of Ca(2+)-independent CaM kinase activity revealed that approximately one-third of th...

متن کامل

Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation.

Activation of the Ca2+- and calmodulin-dependent protein kinase II (CaMKII) and its conversion into a persistently activated form by autophosphorylation are thought to be crucial events underlying the induction of long-term potentiation (LTP) by increases in postsynaptic Ca2+. Because increases in Ca2+ can also activate protein phosphatases that oppose persistent CaMKII activation, LTP inductio...

متن کامل

Physiological and Pathological Roles of CaMKII-PP1 Signaling in the Brain

Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), a multifunctional serine (Ser)/threonine (Thr) protein kinase, regulates diverse activities related to Ca2+-mediated neuronal plasticity in the brain, including synaptic activity and gene expression. Among its regulators, protein phosphatase-1 (PP1), a Ser/Thr phosphatase, appears to be critical in controlling CaMKII-dependent neuronal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 33  شماره 

صفحات  -

تاریخ انتشار 2005